منابع مشابه
Reversible water uptake/release by thermoresponsive polyelectrolyte hydrogels derived from ionic liquids.
Thermoresponsive polyelectrolyte hydrogels, derived from tetra-n-alkylphosphonium 3-sulfopropyl methacrylate-type ionic liquid monomers, show reversible water uptake/release, in which the gels absorb/desorb water for at least ten cycles via a lower critical solution temperature-type phase transition.
متن کاملIonic effects in collapse of polyelectrolyte brushes.
We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brus...
متن کاملionic conductivity in barium hydride
With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline earth hydrides are of limited ...
متن کاملConductivity spectra of polyphosphazene-based polyelectrolyte multilayers.
Polyelectrolyte multilayers are built up from ionically modified polyphosphazenes by layer-by-layer assembly of a cationic (poly[bis(3-amino-N,N,N-trimethyl-1-propanaminium iodide)phosphazene] (PAZ+) and an anionic poly[bis(lithium carboxylatophenoxy)phosphazene] (PAZ-). In comparison, multilayers of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) are investigated...
متن کاملEnhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Macromolecules
سال: 2016
ISSN: 0024-9297,1520-5835
DOI: 10.1021/acs.macromol.6b01276